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Abstract We show that the entanglement entropy originally defined in the context of
quantum mechanics, extended to quantum field theory and now being used in black
hole thermodynamics can be extended to spacetime with a lorentz violating field.
We study how the presence of such field affects the nature of entanglement entropy
in both flat i.e. in the absence of any gravitating body and in the presence of one.
It is found that the entanglement entropy converges with the one derived using the
arguments from Bekenstein. We discuss two widely used procedure for calculating
the entanglement entropy − using replica trick and heat kernel method in such set-
ting. We find that in the presence of non minimal coupling − the heat kernel method
needs certain modifications before it can be applied to calculate entropy in such back-
ground.

1 Introduction

Entanglement entropy or Geometric entropy has been a topic of interest to both field
theorists as well as quantum gravity researchers [1, 16, 7]. It measures the degree of
ignorance or lack of information resulting from tracing over the subsystem separated
from each other through an entangling surface. It is defined for a system with a mem-
brane, interface or a boundary which divides the whole system into two parts, any
causal correlation between them in prevented so that we do not have access to any in-
formation about one part of the system. In such condition, the entanglement entropy
measures the lack of information resulting from the presence of such boundary. This
boundary or membrane which divides the system into two subparts is referred to as
entangling surface. When applied to black holes, where the entangling surface is the
black hole horizon, the geometrical character of the entanglement entropy becomes
crucial.

Especially due to the presence of event horizon which cuts off any causal correla-
tion with the degree of freedom that lies inside the horizon and a vast similarity with
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Fig. 1 In the left figure we see the entangling surface denoted as dotted red line divides the system into
two complementary parts A and B whereas on the right figure we see the entangling surface denoted as a
circle separating the whole system into two complementary parts.

Bekenstein entropy [5]. Due to this property of event horizon as the entangling sur-
face makes it a perfect candidate for studying the nature of entanglement entropy. It
was also found that the entanglement entropy depends solely on the geometry of en-
tangling surface and it’s embedding in the spacetime. Relevent reviews can be found
here [26, 21, 24].

Originally entanglement entropy was studied while preserving the Lorentz sym-
metry however in recent decade we have begun to question to nature of Lorentz sym-
metry and its possible violations [27, 17, 20, 28, 6]. This posits a question on the
nature of entanglement entropy in the presence of Lorentz violation. In this paper,
we wish to study the entanglement entropy of static black hole in the presence of
Lorentz violating background known as bumblebee field. In the presence of such
field, the Schwarzschild solution takes this form [10]:

ds2 =−
(

1− 2GM
r

)
dt2 +(1+ l)

(
1− 2GM

r

)−1

dr2 + r2dΩ
2

The black hole entropy in bumblebee field is given as [13].

dSBH =
dM
TH

= [8πM
√

1+ l]dM = d[4π
√

1+ lM2] =
√

1+ l
A

4
(1)

We expect the entanglement entropy to converge to this form to be a viable candidate
for Bekenstein Hawking entropy.

In the recent breakthroughs [2, 3, 23], we have seen that the entanglement entropy
becomes very important for describing the unitary evaporation of Black Holes. The so
called page curve which describes the entanglement entropy as a function of time has
become a central topic for discussion. An essential step in solving Hawking’s black
hole information paradox is reproducing the Page curve without explicitly assuming
unitarity [14]. However it hinges on the assumption that the entanglement entropy is
where the Black Hole entropy originates from.

Next, is the issue of renormalization of entanglement entropy [22]. The question
weather or not the old treatment on the renormalization should hold depends entirely
on the changes induced by Bumblebee field. As we will see in this paper that this is
indeed the case.

In our previous work, we explored the entropy for black hole in bumblebee gravity
using brick wall method. Where it was found that the black hole entropy becomes
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independent of the
√

1+ l parameter under certain modifications. In the membrane
paradigm of Brickwall method, the entropy of static black hole is given by [19]:

S = β̃
2 ∂F

∂ β̃

= β̃
2
√gθθ gφφ dθdφ

4π
× π

λβ̃ 2

=
A

4λ

Clearly, the entropy is not affected by Lorentz violation at all. This happens because
the computation of entropy on the membrane is done on a hypershell defined by
dr = 0 and thus is not affected by grr term which is the only component of metric
tensor to be impacted by the Bumblebee field. It remains to be seen if similar diffi-
culties arise in the study of entanglement entropy as well. However, without studying
the entanglement entropy in this setup, it is hard to comment upon the nature of en-
tanglement entropy associated with black holes. These are all the more reason for us
to look into the entanglement entropy in Bumblebee gravity.

Sent =−tr ρ̂ ln ρ̂

There are two general ways to calculate the entanglement entropy, first is using replica
trick which we discuss in section (2) of this paper and another one is using Heat kernel
method discussed in section (3). From the literature it is seen that the entanglement
entropy is calculated after Euclideanizing the spacetime and then using replica trick
to calculate the necessary partition function on n−sheeted Riemann manifold for
evaluating the entropy [24, 21, 26, 11]. This has an important consequence on the
nature of entropy calculated using this method. The process of Identification and
Euclideanization imposes the boundary condition on the periodicity of the variable
τ . It is this periodicity which governs the form of final result. We wish to show the
nature of this identification to explain how the final entanglement entropy changes
drastically if one identification is chosen over the other.

2 Entanglement entropy in flat Bumblebee gravity across a hyperplane

In this section we consider the simplest case to begin with by setting the mass pa-
rameter of Schwarzschild solution in bumblebee gravity [10] to zero. It is difficult to
calculate the density matrix (ρ̂ = e−βĤ ) directly in QFT because it requires us to
know the full spectrum of certain integral operators. This is why the replica trick − a
geometric approach− is used to first transform the difficulty of evaluating the density
matrix to determining the partition function. General procedure in replica trick is to
consider Rényi entropy on n−sheeted Riemann manifold obtained by making a cut
that begins at the entangling surface and calculate the partition function on the space.
We recover the entanglement entropy from Rényi entropy under the limit n→ 1. Thus
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τ ∼ τ + 2πn√
1+l
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Fig. 2 The vertical red line at r = 0 describes the entangling hyperplane which divides the space into two
subregions. The cut is made along the r > 0 direction at t = 0. The identification made on the left leads
to a cone that looks like the one described on the right. The trace of ρn is calculated over this n− sheeted
Riemann manifold.

we begin with the metric1 and make a cut along r′ > 0 direction. It changes the metric
tensor in following way with a new boundary condition:

ds2 = dτ
′2 +(1+ l)dr′2 + r′2dΩ

2

= dr2 + r2dτ
2︸ ︷︷ ︸

Cn

+r′2dΩ
2︸ ︷︷ ︸

R2

Here we start with the ansatz that even with the lorentz violating parameter, the
identification on τ is invariant 2. Euclideanization i.e. writing the metric in standard
euclidean form (ds2 = dr2 + r2dτ2) makes the angular variable 2π/

√
1+ l periodic.

In canonical ensemble, the entropy on such manifold with tr ρn = Zn
Zn

1
is given by

[9, 8]:

Sent =−trρ̂ ln ρ̂ =−∂n ln trρn
∣∣∣∣
n=1

=−∂n ln
Zn

Zn
1

∣∣∣∣
n=1

= (1−∂n) lnZn

∣∣∣∣
n=1

(2)

1 Here neither r is the radial distance nor τ is Euclidean time.
2 We assume 2π periodicity on r′.
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The Zn is the partition function of scalar field defined on n−sheeted Riemann mani-
fold Mn. It is seen that the application of replica trick that the periodicity in τ changes
from the 2π√

1+l
to 2nπ√

1+l
. The log of partition function can be calculated similar to

Z = (det[−∇2 +m2])−
1
2 [12]:

lnZn =−
1
2

lndet(−∇
2 +m2)

=−1
2

tr ln(−∇
2 +m2)

=
1
2

∫
∞

ε2

ds
s

tr[e−s(−∇2+m2)− e−s] (3)

Last step was performed using Schwinger trick [25]

lnM =
∫ M

1

dM
M

=
∫ M

1
dM

∫
∞

0
dse−sM = lim

ε2→0

∫
∞

ε2

ds
s
(e−s− e−sM)

The Euclidean time and the the direction perpendicular to the interface forms the
2-dimensional cone Cn. Since the identification began at the entangling surface all
the conic singularities lies on it. In black hole setting this cut on Riemann manifold
lies in the radial direction perpendicular to the entangling surface (event horizon)
which implies that the trace will be taken along r ≥ 2M. The manifold Mn is the
direct product of Cn and R2. This decomposition splits the Laplacian operator into
two parts ∇2 = ∇2

Cn
+∇2

R2 .
In the absence of Lorentz violation i.e. l = 0, the rotational symmetry of Cn along

the τ direction allows us to fourier decompose the modes eı jτ/n with integer j along
the angle τ with period 2nπ . The eigenfunctions of ∇2

Cn
with l = 0 are given as [15]:

∇
2
Cnφk, j(r,τ) =−k2

φk, j(r,τ), (k ∈ R+, j ∈ Z)

φk, j(r,τ) =

√
k

2πn
eı jτ/nJ| j/n|(kr)

with the normalization condition,∫
Cn

d2xφk, j(x)φ ?
k′, j′(x) = δ j j′δ (k− k′)

On the other hand,

∇
2
R2φk⊥(y) =−k2

⊥φk⊥(y), (k⊥ ∈ R+)

φk⊥(y) =
1

2π
eık⊥·y

where 1/2π is the choice of normalization. The only part which changes when we
break the symmetry are the eigenvalues of Laplacian on the cone Cn. We evaluate the
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trace in two parts, one as sum over j and another as integral over k as follows:

tr[e−s(−∇2+m2)] =
∫

Cn

d2x
∞

∑
j=−∞

∫
∞

0
dke−s(k2+m2)

φk, j(x)φ ?
k, j(x)

·
∫
R2

d2y
∫

d2k⊥e−sk2
⊥φk⊥(y)φ

?
k⊥(y)

=
Vol(R2)

4πs
e−sm2

∫
Cn

d2x
∞

∑
j=−∞

∫
∞

0
dke−s(k2)

φk, j(x)φ ?
k, j(x) (4)

The Vol(R2) is the surface area of entangling surface. In the presence of black hole
where the entangling surface is the event horizon, this volume will be the horizon
area A . We can now use (4) for evaluating the lnZn using (3). Note that the equation
(4) does not yet have ‘n’ dependence, that comes from evaluating the integral on the
Cn. The divergent ∑

∞
j=−∞ will be regularized using ζ (s) function.

2.1 Eigenvalue of Laplacian on Cn

From the previous section it is clear that the entanglement entropy depends entirely
on the eigenfunctions of the Laplacian operator on the cone. Laplacian operator over
Cn with Lorentz violating parameter is given as:

∇
2 =

1
r

∂

∂ r
+

∂ 2

∂ r2 +
1

r2(1+ l)
∂ 2

∂τ2

→ 1
r

∂

∂ r
+

∂ 2

∂ r2 +
1
r2

∂ 2

∂τ2

with the Laplacian euclideanized in the last step, we have the eigenvalue problem
∇2φ =−k2φ . From separation of variables φ(r,τ) = R(r)Θ(τ):

r2∂rrR+ r∂rR+ k2r2R
R

+
Θ(τ)′′

Θ(τ)
= 0

The angular part of the solution has this form:

Θ(τ)′′ =−k2
‖Θ(τ)

Θ(τ) = ei j
√

1+lτ/n

here we have used the boundary condition to specify the topology of space and fixes
the form of eigenvalue as k2

‖ =
j2

n2 (1+ l). Substituting it back into the PDE, we have:(
∂rr +

1
r

∂r−
j2(1+ l)

n2
1
r2

)
R(r) =−k2R(r)

This is Bessel’s PDE and it has a solution of the form [4]:

R(r) = J j
√

1+l
n

(kr)
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Now that we have the solution, we impose the orthonormality condition:

φ(r,τ) = NΘ(τ)×R(r) = NJ∣∣∣ j
√

1+l
n

∣∣∣(kr)ei j
√

1+lτ/n (5)

using the result [18]: ∫
∞

0
rdrJα(ar)Jα(br) =

δ (a−b)
a

we have ∫
∞

0
rdrJα(kr)Jα(kr) =

1
k

where α =
j
√

1+ l
n

This solution can now be used to evaluate the trace needed for partition function
defined in (3). Referring back to (4) and using d2x=

∫ 2nπ/
√

1+l
0

∫
∞

0
√

gdrdτ with N2 =
k
√

1+l
2nπ

.

tr[e−s(−∇2+m2)] =
Vol(R2)

4πs
e−sm2

∫
Cn

d2x
∞

∑
j=−∞

∫
∞

0
dke−sk2 |φk, j(x)|2

=
Vol(R2)

4πs
e−sm2

∫
Cn

2πn√
1+ l

rdr
∞

∑
j=−∞

∫
∞

0
dke−sk2 |φk, j(x)|2

=
Vol(R2)

4πs
e−sm2

√
1+ l
12n

(6)

In the second step we have used the identities:∫
∞

0
dkke−sk2

Jα(kr)2 =
e−r2/(2s)

2s
Iα

(
r2

2s

)
∫

∞

0
dr

re−r2/(2s)

2s
Iα

(
r2

2s

)
=−α

2
(7)

The above two integrals can also be performed with the help of mathematica. We are
now left with tr(e−s) =

∫
Cn

d2x
∫
R2 d2ye−s which is seen to be proportional to n and

thus does not contribute to (2). It can be seen that the equation (7) has UV divergence
coming from ∑ j α which can be regularized using

2ζ (−1) =
∞

∑
j=−∞

| j|=−1
6

Putting it all together and evaluating the integral in ‘s’, we expand the result around
ε = 0:

Sent = (1−∂n) lnZn

∣∣∣∣
n=1

= lnZ1− lnZ1∂n
1
n

∣∣∣∣
n=1

+ · · ·= 2lnZ1 + . . .

=
√

1+ l
A

48πε2 + . . . (8)
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Here we see a similar dependence of entropy on
√

1+ lA as seen in (1) which reas-
sures our confidence in the entanglement entropy. It is an interesting remark to add
that this entropy is sensitive to the periodicity imposed upon Euclideanization. If we
make a different choice of periodicity in r′ such as if 2π

√
1+ l periodicity was cho-

sen3, then the order of bessel function would be independent of
√

1+ l and be given
by α = j/n.

ds2 = dτ
′2 +(1+ l)dr′2︸ ︷︷ ︸
this becomes Cn

+r′2dΩ
2︸ ︷︷ ︸

R2

If we evaluate entropy with that boundary condition then the entanglement entropy
would not be a viable candidate for explaining the origins of black hole entropy. In
the l→ 0 limit, we recover original entanglement entropy in 4d [26].

Sent =
A

48πε2

3 Entropy of the Black Hole

In the previous section we studied the flat spacetime entanglement entropy for scalar
field in the presence of Lorentz violating bumblebee field with mass parameter set to
zero. In this section we study the entanglement entropy with non zero mass parameter
using Heat kernel approach. Consider a more general equation of motion with non
minimal coupling:

(−∇
2 +ξ R+m2)φ = 0

Heat kernel approach is slightly different from replica trick in terms of how we eval-
uate the partition function:

lnZn =
1
2

∫
∞

0

ds
s

tre−s(D+m2) =
1
2

∫
∞

0

ds
s

tr KMn(s)e
−sm2

where
KMn(s) = e−sD and D =−∇

2 +ξ R

Since KMn(s) = e−sD also satisfies the heat equation (∂s +D)KMn(s) = 0 we gen-
erally refer to it as heat kernel. The series expansion for trace of heat kernel is given
as:

tr KMn =
1

(4πs)2

∞

∑
i=0

ai(Mn)si

Due to the presence of conical singularity on the entangling surface, heat kernel co-
efficients on Mn has an expansion of the form:

ai = abulk
i +(1−n)aR

2

i + . . .

The space Mn looks like a direct product of the spaces Cn×Σ where Σ is the singular
entangling surface. This entangling surface in our case is the event horizon R2

r=rH
.

From the literature it is seen that the entangling surface area A term in entropy comes
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r = δ

r = 0

Fig. 3 A cone with a singularity at r = 0 has been smoothened or regularized by replacing the tip with a
disk. We achieve this by adding a smoothing function in the metric.

from surface contribution [26]. Thus we restrict our focus to surface terms which are
produced from regularized cone [21]:

ds2
Cn = eσ(r)[ fδ (r)dr2 + r2(1+ l)dτ

2]

smoothing function fδ (r) is defined as:

fδ (r) =
{

n2 if fδ (r→ 0)
1 if fδ (r > δ )

The surface term aR
2

1 with non zero l is given as :

aR
2

1 = 4π(1−n)
√

1+ l
(1−6ξ )

6

∫
R2

1

The partition function becomes

lnZn =
(1−n)

√
1+ l

2

∫
∞

0

ds
4πs2

Vol(R2)(1−6ξ )

6
e−sm2

+ . . . (9)

On comparision with equation (6) we see that both of them has similar structure. It
is because heat kernel coefficients have direct dependence on Ricci scalar and higher
order curvature tensors, therefore the appearance of

√
1+ l in the aR

2

1 can be easily
seen from the integral of Ricci scalar (R) as the coefficient a1 depends directly on it:∫

Cn

R = 2πn
√

1+ l
∫

∞

0
dr[−2∂r f−1/2

δ
(r)− r f−1/2

δ
(r)∂ 2

r σ ]

= 4πn
√

1+ l(1−n)−
∫

Cn

f−1/2
δ

(r)∂ 2
r σ

An interesting remark to be made here is that Ricci scalar on cone Cn stays same even
in the presence of Lorentz violating Bumblebee field, however, the induced metric
hi j on the cone changes drastically. All the conic singularities lie on the entangling

3 Instead of 2π
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surface (R2), which is regularized with a smoothing function to calculate the surface
term. In the limit l→ 0 we recover the original result [21].∫

Cn

R = 4πn(1−n)−
∫

Cn

f−1/2
δ

(r)∂ 2
r σ

The partition function in equation (9) can be used to evaluate the entropy for black
hole.

Sent =
√

1+ l
(1−6ξ )A

48πε2 + . . .

In minimal coupling setup ξ = 0, we recover (8).

Sent =
√

1+ l
A

48πε2 + . . .

4 Discussion and Conclusion

In this paper we studied the concept of entanglement entropy on hyperplane as well
as in semi classical gravity with spontaneously broken Lorentz symmetry. We re-
covered a similar expression to brickwall calculations and one which can be found
from Bekenstein [5, 13] and found that short distance cutoff ε was unaffected by
symmetry breaking. This leads to an interesting conclusion that the renormalization
procedure outlined by [22] works exactly the same way with a slight modification in
the order of Bessel function. It was seen that the replica trick is sensitive to the Eu-
clidean periodicity in τ and improper choice of periodicity can lead to wrong result.
We also studied the entropy using Heat Kernel procedure and found certain modifi-
cations to Heat kernel coefficients from Lorentz violation. We regained some more
confidence in entanglement entropy after Heat kernel method gave us the same re-
sult. Some caveats to the problem stays, the form of metric tensor for a rotating black
hole in bumblebee gravity is rather non trivial. In such condition the Euclideaniza-
tion of metric becomes more complicated and thus the heat kernel approach or replica
trick could result unfaithful. It should be noted that in bumblebee field, Ricci scalar
doesn’t vanish unlike Schwarzschild solution. This should produce some higher order
corrections to the entropy.
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17. Kosteleckỳ, V.A., Samuel, S.: Spontaneous breaking of lorentz symmetry in
string theory. Physical Review D 39(2), 683 (1989)

18. Li, Y., Wong, R.: Integral and series representations of the dirac delta function.
arXiv preprint arXiv:1303.1943 (2013)

19. Liu, C.Z.: Black hole entropies of the thin film model and the membrane model
without cutoffs. International Journal of Theoretical Physics 44(5), 567–579
(2005)

20. Moffat, J.: Lorentz violation of quantum gravity. Classical and Quantum Gravity
27(13), 135016 (2010)

21. Nishioka, T.: Entanglement entropy: holography and renormalization group. Re-
views of Modern Physics 90(3), 035007 (2018)

22. Pang, J.Y., Chen, J.W.: On the renormalization of entanglement entropy. AAPPS
Bulletin 31(1), 1–7 (2021)

23. Penington, G.: Entanglement wedge reconstruction and the information paradox.
Journal of High Energy Physics 2020(9), 1–84 (2020)

24. Rangamani, M., Takayanagi, T.: Holographic entanglement entropy. In: Holo-
graphic Entanglement Entropy, pp. 35–47. Springer (2017)

25. Schwartz, M.D.: Quantum field theory and the standard model. Cambridge Uni-
versity Press (2014)



12 Chandra Prakash

26. Solodukhin, S.N.: Entanglement entropy of black holes. Living Reviews in Rel-
ativity 14(1), 1–96 (2011)

27. Visser, M.: Lorentz symmetry breaking as a quantum field theory regulator.
Physical Review D 80(2) (2009). DOI 10.1103/physrevd.80.025011. URL
http://dx.doi.org/10.1103/PhysRevD.80.025011
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